		INDIAN SCHOOL AL WADI AL KABIR				
Class: XII		DEPARTMENT: SCIENCE 2022-23 SUBJECT: CHEMISTRY		Date of completion: I week of November 2022		
Worksheet No: 03 with answers		TOPIC: ELECTROCHEMISTRY		Note: A4 FILE FORMAT		
NAME (NAME OF THE STUDENT		CLASS & SEC:		ROLL NO.	
SOLVED QUESTION ANSWERS						
Q.1	1 Differences between metallic and electrolytic conduction					
Δ		Metallic conduc	etion	Electrolytic	onduction	
	 Metallic conduction is ca movement of electrons. It involves no change in th properties of the conduct It does not involve the any matter. Metallic conduction deconincrease in temperature 		urried by the the chemical ctor. transfer of reases with e.	Electrolytic conduction is carried by the movement of ions. It involves the decomposition of the elec- trolyte as a result of the chemical reaction. It involves the transfer of matter as ions. Electrolytic conduction increases with increase in temperature.		
Q.2	What a	re the two types o	f electrolytes	? Give two examples f	or each.	
A	Strong e solution Weak e weak el	Strong electrolytes. The electrolytes which are almost completely dissociated into ions in solution are called strong electrolytes. For example, NaCl, KCl Weak electrolytes. The electrolytes which do not ionise completely in solution are called weak electrolytes. For example, CH3COOH, HCN				
Q.3	The res ohm. W 0.146 x	The resistance of a conductivity cell containing 0.001 M KCl solution at 298 K is 1500 ohm. What is the cell constant if the conductivity of 0.001 M KCl solution at 298 K is 0.146 x 10 ⁻³ Scm ⁻¹ ?				
A	Cone Re Ce ∴ Ce	ductivity, $\kappa = 0.146 \times$ esistance, $R = 1500$ ohr ell constant $= \frac{Conduc}{Conduc}$ = Conduc ell constant $= 0.146 \times 1000$	10 ⁻³ S cm ⁻¹ m tivity, (κ) tance (G) tivity (κ) × Resis 10 ⁻³ ohm ⁻¹ cm ⁻¹ >	tance (R) < 1500 ohm		
Q.4	The conduc	= 0.219 cr nductivity of 0.20 tivity.	M KCl solu	tion at 298 K is 0.025	5 Scm ⁻¹ . Calculate	its molar

А	
	$\Lambda_{\rm m} = \frac{\kappa \times 1000}{100}$
	m C
	$K = 0.028 \text{ S cm}^2$, $C = 0.20 \text{ M}$
	$\Lambda_m = 125.0 \text{ S cm}^2 \text{ mol}^{-1}.$
Q.5	A conductivity cell when filled with 0.01 M KCl has a resistance of 745 Ω at 25°C. When the same cell was filled with an aqueous solution of 0.005 M CaCl ₂ , solution the resistance
	was 874 Ω. Calculate
	(i) Conductivity of solution
	(ii) Molar conductivity of solution. [Conductivity of 0.01 M KCI =0.141Sm ⁻¹]
A	HINT:
	Cell constant = $K \times K$ Cell constant
	Conductivity, $\kappa = \frac{1}{R}$
	$\Lambda_{m} = \frac{\kappa \times 1000}{1000}$
0.(
Q.6	The molar conductivities at infinite dilution for Nal, CH, COONa and $(CH, COO)_2$ Mg are 12.60, 0.10 and 18.78 Som ² mol ⁻¹ respectively at 25°C. What is the molar conductivity of
	$M_{\sigma}I_{2}$ at infinite dilution?
A	$\Lambda^{\circ} (MgI_{2}) = \Lambda^{\circ}[(CH_{3}COO)_{2}Mg] + 2\Lambda^{\circ}(NaI) - 2\Lambda^{\circ} (CH_{3}COONa)$
	$\Lambda^{\circ}(MgI_2) = 18.78 \pm 2(12.69) - 2(9.10)$
	= 25.56 SCIII- III01 -
Q.7	Conductivity of 0.00241 M acetic acid is 7.896 x 10 ⁻⁵ Scm ⁻¹ . Calculate its molar
	conductivity and if Λ^0 for acetic acid is 390.5 Scm 2 mol $^{-1}$ What is its dissociation
	constant ?
A	$\Lambda = \frac{\kappa \times 1000}{M}$
	$7.896 \times 10^{-5} \times 1000$
	$\Lambda = \frac{1.030 \times 10^{-1} \times 1000}{0.00241}$
	$= 32.76 \text{ S cm}^2 \text{ mol}^{-1}$
	$\alpha = \frac{A_m}{M_m} - \frac{32.76}{0.0839}$
	$A_m^* = 390.5 \pm 0.0000$
	$K = \frac{C\alpha^2}{C\alpha^2} = \frac{0.00241 \times (0.0839)^2}{C\alpha^2}$
	$n = (1 - \alpha) = (1 - 0.0839)$
	$= 1.85 \times 10^{-5}$.
Q.8	a.Which will have greater molar conductivity?
	i. Solution containing 1 mol of KCl in 200 ml or 1 mol of KCl in 500 ml.
	11. Solution containing 1 mol of LiCl in 500 ml or 1 mol of KCl in 500 ml.
	D. Write an expression for molar conductivity of Al2(504)3 at infinite dilution in terms of their ionic molar conductivities (bint: strong electrolytes, dissociation into ions)
	or men iome motal conductivities. (mint, strong electrolytes, dissociation mito ions)

Q.11	A copper wire is dipped in silver nitrate solution in beaker A and a silver wire is dipped			
	in a solution of copper sulphate kept in beaker B. If the standard electrode potential for $Cw^{2+} + 2c^{2-} = \sum Cw - ic + 0.24 \text{ V}$			
	$Cu^{2+} + 2e^{-} \longrightarrow Cu^{-} is + 0.34 V$ $Ag^{+} + e^{-} \longrightarrow Ag^{-} is 0.80 V$			
	Predict in which beaker the ions present will get reduced ?			
Α	HINT: lower E^0 value acts as an anode, whereas the higher E^0 value acts as a cathode.			
Q.12	Zine rod is dipped in 0.1M solution of ZnSO ₄ . The salt is 95% dissociated at this dilution at 298 K. Calculate the electrode potential given that E^0 (Zn ²⁺ Zn) =0.76 V.			
Α	The electrode reaction is : $Zn^{2+} + 2e^{-} \qquad \qquad Zn(s)$			
	According to Nernst equation, at 298 K			
	$E(Zn^{2+} Zn) = E^{\oplus}(Zn^{2+} Zn) - \frac{0.059}{n} \log \frac{[Zn]}{[Zn^{2+}(aq)]}$			
	$E^{\Theta}(Zn^{2+} Zn) = -0.76 V,$	2		
	[Zn] = 1,	n=2		
	$[Zn^{2+}(aq)] = 0.1 \times 95/100 = 0.095 M$	log 1 = 0		
		log 10.53 = 1.0224		
	$E(Zn^{2+} Zn) = -0.76 - \frac{0.059}{n} \log \frac{1}{0.095}$			
	= -0.76 - 0.03 = -0.79V.			
Q.13	Write the Nernst equation and calculate the e.m.f.	of the following cell at 298 K:		
	$Cu(s) \mid Cu^{2+} \ (0.130 \ M) \parallel Ag^+ \ (1.0 \times 10^{-4} \ M)) \mid Ag \ (s)$			
	Given : $E^{\bigoplus}_{(Cu^{2+} Cu)} = + 0.34V$ and			
	$E^{\ominus}_{(Ag^+ Ag)} = + 0.80V$			
Α	[]			
	$E_{cell} = E_{cell}^{\ominus} - \frac{0.059}{2} \log \frac{\left[Cu^{2+}\right]}{\Gamma_{cell}^{2+}}$			
	$\mathbf{E}^{\Theta} = \mathbf{E}^{\Theta} + \cdots - \mathbf{E}^{\Theta} + 2 + 2$			
	= 0.80 - 0.34 = 0.46 V	log 7 = 7 log10		
	$E_{1} = 0.42 = 0.059_{1-1} = (0.130)$	$\log 10 = 1$		
	$E_{cell} = 0.40 - \frac{100}{2} \frac{100}{(1.0 \times 10^{-4})^2}$	$\log 1.2 = 0.1120$		
	$= 0.46 - \frac{0.059}{2} \log 1.30 \times 10^7$	10g 1.5 – 0.1159		
	= 0.46 - 0.21			
	= 0.25 V.			
Q.14	Calculate the e.m.f. of the following cell:			
	Cd Cd ²⁺ (0.01M) H ⁺ (0.02M) Pt, H ₂ (0.8 atm)			
	$Given : E^{\circ}(Cd^{2+} Cd) = -0.40 V$			

Α	The cell reaction is :
	$\operatorname{Cd}(s) + 2\operatorname{H}^{+}(aq) \longrightarrow \operatorname{Cd}^{2+}(aq) + \operatorname{H}_{2}(g)$
	$\mathbf{E} = \mathbf{E}^{\circ} - \frac{0.059}{2} \log \frac{[\mathrm{Cd}^{2+}] \times p(\mathrm{H}_2)}{[\mathrm{H}^+]^2}$
	$E = E^{\circ}(H^{+} \frac{1}{2} H_{2}) - E^{\circ}(Cd^{2+} Cd)$
	= 0 - (-0.40) = 0.40 V
	$0.050 = (0.01) \times 0.8$
	$\mathbf{E} = 0.40 - \frac{0.037}{2} \log \frac{(0.01) \times 0.8}{(0.02)^2}$
	$= 0.40 - \frac{0.059}{2} \times 1.3010$
	= 0.40 - 0.04
	= 0.36 V
Q.15	Calculate the value of the equilibrium constant for the following cell reaction :
	$4Br^- + O_2 + 4H^+ \longrightarrow 2Br_2 + 2H_2O$
	Given that E ⁰ cell= 0.16 V. Comment on the reaction.
Α	nF°
	$\log K_{\rm C} = \frac{1.2 \text{ cell}}{0.0591}$
	$E_{cell} = 0.16 V, n = 4$
	$\log K_{\rm C} = \frac{(4) \times (0.16 \text{ V})}{(0.0501 \text{ V})}$
	$K_{\rm C}$ = Antilog 10.847
	10
	$Kc = 7.03 \times 10$
Q.16	
_	Determine the values of equilibrium constant (K_c) and
	ΔG° for the following reaction : $N_{i}^{\circ}(\cdot) : 2A = (\pi - 1) \cdot 2A = (\pi -$
	$Nt(s) + 2Ag'(aq) \longrightarrow Nt^{-1}(aq) + 2Ag(s), E = 1.05V$ $(1F = 96500 \text{ C mol}^{-1})$
Δ	hint.
11	(i) $\Delta G^{\circ} = -202.650 \text{ kJ}$
	(ii) $Kc = 2.82 \times 10^{35}$
Q.17	Refer to the diagram and explain the electrochemical cell set up in the process of corrosion.

	AIR			
	Drop of moisture 2) Rust			
	Fe _o O _o ,xH _o O			
	> Fe ²⁺			
	7 (Cathode)			
	$F_{e} \rightarrow F_{e^{2+}} + 2e^{-} / 4H^{+} + O_{e} + 4e^{-} \rightarrow 2H_{e}O$			
	(Anode)			
	Iron			
Α	Hint: Write down the cell reactions involved.			
0.18	From the given cells.			
Q.10	L and storage call. Moreury call Fuel call and Dry call			
	A new on the following:			
	Answer the following:			
	(1) Which cell is used in hearing aids?			
	(ii) Which cell was used in Apollo Space Programme?			
	(iii) Which cell is used in automobiles and inverters?			
	(iv) Which cell does not have a long life?			
Α	(i) Mercury cell			
	(ii) Fuel cell			
	(iii)Lead storage cell			
	(iv)Drv cell			
0.19	How much charge is required for the following reduction:			
Q.17	(i) 1 mol of Al^{3+} to Al			
	(i) I mol of Cu^{2+} to Cu			
	(II) I III0I 0I Cu^{-1} to Cu (III) I III0I 0I Cu^{-1} to Cu			
	(III) I mol of NINO4 to NIN2+			
0.00	Hint: one mol of electrons = $IF = 9648 / Cmol^{-1}$			
Q.20	The following curve is obtained when molar conductivity is plotted against the square root of			
	concentration, along the y and x-axis respectively for the two electrolytes X and Y.			
	° − − − − − − − − − − − − − − − − − − −			
	§ 400-			
	S X			
	< 200- Y			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	(i) What can you say about the nature of these two electrolytes?			
	(i) How do you account for the increase in molar conductivity for the electrolytes V and			
	V with dilution 2			
	I WILL ULLUUI :			
	(in) now can you determine the limiting molar conductivity for these electrolytes ?			
Α	1. Electrolyte X is a strong electrolyte and Y is a weak electrolyte.			
	ii. Molar conductivity of X(strong electrolyte) increases slowly with dilution. This is			
	because interionic forces of attraction decrease on dilution, although the number of			

	ions remains the same. As a result, ions move more freely and hence molar			
	conductivity increases with dilution.			
	On the other hand, for Y (weak electrolyte), molar conductivity increases sharply with			
	dilution. This is because, the degree of dissociation increases on dilution resulting in			
	the greater number of ions on dilution. Hence molar conductivity increases.			
	iii. For X, limiting molar conductivity can be obtained by extrapolation to zero concentration.			
	For Y, limiting molar conductivity can be calculated by using Kohlrausch's law.			
Q.21	For redox reaction to proceed in a cell, the e.m.f. must be			
	(a) positive			
	(b) negative			
	(c) fixed			
	(d) zero			
	Ans. (a)			
0.22	The tendency of the electrodes made up of Cu. Zn and Ag to release electrons when dipped in			
C	their respective salt solutions decrease in the order:			
	(a) $Zn > Ag > Cu$			
	(a) $\sum n \sum $			
	(c) $7n > Cu > Ag$			
	$\begin{array}{c} (c) & \Sigma n > Cu > Tng \\ (d) & \Delta g > Cu > Tn \end{array}$			
	(u) Hg > Cu > Zh			
0.22	The limiting moler conductivities for NaCl. KDr and KCl are 126, 152 and 150 S am ² mol ⁻¹			
Q.23	The limiting molar conductivities for NaCi, KBr and KCi are 120, 152 and 150 S cill mol			
	respectively. The minimum motar conductivity for Nabris: $() 270 \text{ g} = \frac{2}{1-1}$			
	(a) $2/8$ S cm ² mol ²			
	(b) $9/6$ S cm ² mol ⁴			
	(c) $128 \text{ S cm}^2 \text{ mol}^4$			
	(d) $302 \text{ S cm}^2 \text{ mol}^{-1}$			
	Ans. (c)			
Q. 24	Rust is a mixture of:			
	(a) FeO and Fe(OH) ₃			
	(b) FeO and $Fe(OH)_2$			
	(c) Fe_2O_3 and $Fe(OH)_3$			
	(d) Fe_3O_4 and $Fe(OH)_3$			
	Ans. (c)			
Q. 25	A current is passed through two cells connected in series.			
	The first cell contains $X(NO_3)_3(aq)$ and the second cell contains $Y(NO_3)_2(aq)$. The relative			
	atomic masses of X and Y are in the ratio 1: 2. What is the ratio of the liberated mass of X to			
	that of Y?			
	(a) 3:2 (b) 1:2 (c) 1:3 (d) 3:1 (e) 2:1			
	Ans. (c)			

Q.26	In the following questions, a statement of Assertion (A) followed by a statement of Reason (R) is given. Choose the correct option out of the following choices: (a) Both Assertion and Reason are true and the Reason is the correct explanation for Assertion. (b) Both Assertion and Reason are true and the Reason is not the correct explanation for Assertion (c) Assertion is true but the Reason is false. (d) Both Assertion and Reason are false. (e) Assertion is false but Reason is true.
a.	Assertion (A): Conductivity of all electrolytes decreases on dilution. Reason (R): On dilution number of ions per unit volume decreases. Ans: (a)
b.	Assertion (A): Mercury cell does not give steady potential. Reason (R): In the cell reaction, ions are not involved in the solution. Ans: (e)
с.	Assertion (A): Current stops flowing when $E_{cell} = 0$. Reason (R): Equilibrium of the cell reaction is attained. Ans: (a)
d.	Assertion (A): Copper sulphate can be stored in a zinc vessel. Reason (R): Zinc is less reactive than copper. Ans: (d)
Q.27 Year 2022	The molar conductivity of CH ₃ COOH at infinite dilution is 390 Scm ² /mol. Using the graph and given information, the molar conductivity of CH ₃ COOK will be:

Q. 28 Year 2022	What is the molar conductance at infinite dilution for conductance at infinite dilution of Na ⁺ and Cl ⁻ ions an 73.54× 10 ⁻⁴ Scm ² /mol respectively? a. 124.66 Scm ² /mol b. 22.42 Scm ² /mol c. 198.20Scm ² /mol d. 175.78 Scm ² /mol	sodium chloride if the molar e 51.12 × 10 ⁻⁴ Scm ² /mol and
Q. 29 Year 2022	Corrosion is an electrochemical phenomenon. The oxygen in moist follows: $O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-$ (aq). Write down the possible reactions for corrosion of zinc occurring at ano overall reaction to form a white layer of zinc hydroxide.	air reacts as de, cathode, and
Α	Anode: Zn (s) → Zn ²⁺ (aq) + 2 e- Cathode: O ₂ (g) + 2H ₂ O(l) + 4e ⁻ → 4OH ⁻ (aq). Overall: 2 Zn (s) + O ₂ (g) + 2H ₂ O(l) → 2 Zn ²⁺ (aq) + 4OH ⁻ (aq) 2 Zn (s) + O ₂ (g) + 2H ₂ O(l) → 2 Zn(OH) ₂ (ppt)	(1/2) (1/2) (1)
Q. 30 Year 2022	 a. Why does the cell voltage of a mercury cell remain constant lifetime? b. Write the reaction occurring at anode and cathode and the prelectrolysis of aq KCI. c. What is the pH of HCI solution when the hydrogen gas electron a potential of -0.59 V at standard temperature and pressure 	during its roducts of ode shows e?
Α	a. The cell potential remains constant during its life as the overall read involve any ion in solution whose concentration can change during b. KCl (aq) à K ⁺ (aq) + Cl ⁻ (aq) cathode: H ₂ O(l) + e- à ½ H ₂ (g) + OH ⁻ (aq) anode: Cl- (aq) à ½ Cl ₂ (aq) + e- net reaction: KCl (aq) + H ₂ O (l) à K ⁺ (aq) +OH ⁻ (aq) + ½ H ₂ (g) + ½ Cl ₂ (g) c. Given, potential of hydrogen gas electrode = -0.59 V Electrode reaction: H ⁺ + e ⁻ → 0.5 H ₂ Applying Nernst equation, E (H ⁺ /H ₂) = E ^o (H ⁺ /H ₂) - <u>0.059</u> log [H ₂] ^{1/2} n [H ⁺] E ^o (H ⁺ /H ₂) = 0 V E (H ⁺ /H ₂) = -0.59 V n = 1 [H ₂] =1 bar -0.59 = 0 - 0.059 (- log [H ⁺]) -0.59 = -0.059pH ∴ pH = 10	ction does not its life time.(1) (1/2) (1) (1) (1) (1/2) (1/2)

Q.31 Year 2022	 a. Molar conductivity of substance "A" is 5.9×10³ S/m and "B" is 1 x 10⁻¹⁶ S/m. Which of the two is most likely to be copper metal and why? b. What is the quantity of electricity in Coulombs required to produce 4.8 g of Mg from molten MgCl₂? How much Ca will be produced if the same amount of electricity was passed through molten CaCl₂? (Atomic mass of Mg = 24 u, atomic mass of Ca = 40 u). c. What is the standard free energy change for the following reaction at room temperature? Is the reaction spontaneous? Sn(s) + 2Cu²⁺ (aq) à Sn²⁺ (aq) + 2Cu⁺ (s) 		
A	a. "A" is copper, metals are conductors thus have high value of conductivity. (1) b. $Mg^{2+} + 2e^- a Mg$ 1 mole of magnesium ions gains two moles of electrons or 2F to form 1 mole of Mg 24 g Mg requires 2 F electricity 4.8 g Mg requires 2 x4.8/24 = 0.4 F = 0.4 x96500 = 38600C (1)		
	Ca²+ + 2e⁻ →Ca		
	2 F electricity is required to produce 1 mole =40 g Ca		
	0.4 F electricity will produce 8 g Ca	(1)	
	c. F = 96500C, n=2,		
	Sn^{2+} (aq) + 2e ⁻ \rightarrow Sn(s) –0.14V		
	$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq) = 0.15 V$		
	Eºcell = Eºcathode – Eº anode		
	= 0.15 - (-0.14) = 0.29V	(1)	
	$\Delta G^{\circ} = -nFE^{\circ}_{cell}$		
	= -2 x96500x 0.29 = 55970 J/mol	(1)	
Prepared by	: Ms Jenifer Robinson		